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Abstract

The objective of this work is to improve the performance of an artificial neural network (ANN) with a statistical weighted pre-processing
(SWP) method to learn to predict ground source heat pump (GCHP) systems with the minimum data set. Experimental studies were completed
to obtain training and test data. Air temperatures entering/leaving condenser unit, water-antifreeze solution entering/leaving the horizontal ground
heat exchangers and ground temperatures (1 and 2 m) were used as input layer, while the output is coefficient of performance (COP) of system.
Some statistical methods, such as the root-mean squared (RMS), the coefficient of multiple determinations (R2) and the coefficient of variation
(cov) is used to compare predicted and actual values for model validation. It is found that RMS value is 0.074, R2 value is 0.9999 and cov value
is 2.22 for SCG6 algorithm of only ANN structure. It is also found that RMS value is 0.002, R2 value is 0.9999 and cov value is 0.076 for SCG6
algorithm of SWP-ANN structure. The simulation results show that the SWP based networks can be used an alternative way in these systems.
Therefore, instead of limited experimental data found in literature, faster and simpler solutions are obtained using hybridized structures such as
SWP-ANN.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

GCHP systems have received considerable attention in re-
cent decades as an alternative energy source for residential
and commercial space heating and cooling applications. GCHP
utilises the energy storage capacity of the ground to provide
highly efficient heating, cooling and hot water for many differ-
ent types of buildings enabling major reductions in electrical
and gas consumption to be achieved. This technology has a
lower environmental force than any conventional system, with
GCHPs offering the lowest CO2 emission count for heating
products, and a very low liability for Carbon Taxes. A GCHP
system uses the world’s largest heat reserve, storage facility and
solar collector—the earth itself. The ground is able to provide

* Corresponding author. Tel.: +90 424 237 0000/4228; fax: +90 424 236
7064.

E-mail address: hikmetesen@firat.edu.tr (H. Esen).
1290-0729/$ – see front matter © 2007 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ijthermalsci.2007.03.004
free cooling, a heat source and a heat sink, enabling major envi-
ronmental benefits to be achieved. Surplus heat generated in the
building in summer months is effectively stored in the earth and
used to improve the efficiency during the heating season. Heat
extracted from the ground and used in the building during win-
ter months gives the free cooling ability and higher efficiency
mechanical cooling in high summer. The ground heat exchanger
(GHE) used in conjunction with a closed-loop GCHP system
consists of a system of long plastic pipes buried vertically or
horizontally in the ground [1,2].

Forecasting of performance is important in many heat pump
applications. It is recommended that ANN can be used to
predict the performances of thermal systems in engineering
applications. Accurate heat pump system performance fore-
casting is the precondition for the optimal control and energy
saving operation of Heating, Ventilating and Air-Conditioning
(HVAC) systems. Especially for those systems that use ther-
mal storage technology, heat pump performance forecasting
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Nomenclature

ANN Artificial neural network
COP heating coefficient of performance of ground cou-

pled heat pump system
cov coefficient of variation . . . . . . . . . . . . . . . . . . . . . . %
Cp,air specific heat of air . . . . . . . . . . . . . . . . . . . . kJ/kg K
n number of independent data patterns
RMS root-mean square error
R2 fraction of variance
SCG scaled conjugate gradient learning algorithm
SWP statistical weighted pre-processing
t target neural network output
Ta outdoor air temperature . . . . . . . . . . . . . . . . . . . . . ◦C
Ti indoor air temperature . . . . . . . . . . . . . . . . . . . . . . ◦C
Tg1 temperature of ground at 1 m depth . . . . . . . . . . ◦C
Tg2 temperature of ground at 2 m depth . . . . . . . . . . ◦C
Twa,out outlet average water-antifreeze solution

temperature of HGHE . . . . . . . . . . . . . . . . . . . . . . ◦C
Twa,in inlet average water-antifreeze solution temperature

of HGHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C

Tair,out average air temperature leaving condenser unit ◦C
Tair,in average air temperature entering condenser

unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
y calculated neural network output
w total uncertainty in the measurement of the mass

flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %
Ẇc power input to compressor . . . . . . . . . . . . . . . . . kW
Ẇp total power input to water-antifreeze solution

circulating pump . . . . . . . . . . . . . . . . . . . . . . . . . . kW
Ẇcf power input to condenser fan . . . . . . . . . . . . . . . kW
V̇air volumetric flow rate of air . . . . . . . . . . . . . . . . m3/s
ρair density of air . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

Superscripts

mea measured
pre predicted
1 for HGHE1
2 for HGHE2
will be highly important and essential. Numerous prediction
techniques, which mainly include multiple linear regression
(MLR), autoregressive integrated moving average (ARIMA),
grey model (GM) and artificial neural network (ANN), have
been formerly studied in the heat pump performance forecast-
ing. ANN is widely accepted as a technology offering an al-
ternative way to tackle complex problems in actual situations.
The advantage of ANN with respect to other models is their
ability of modelling a multivariable problem given by the com-
plex relationships between the variables and can extract the im-
plicit non-linear relationships among these variables by means
of ‘learning’ with training data.

ANN modelling of energy systems has been recently stud-
ied by numerous investigators, as summarized by Kalogirou [3].
Bechtler et al. [4] presented an ANN model for predicting the
steady-state performance of a vapour compression heat pump.
Swider [5] compared ANNs and empirically based steady-state
models for vapour compression liquid chillers. Arcaklioglu
et al. [6] determined the performance of a vapour compres-
sion heat pump using ANNs. Ertunc and Hosoz [7] used the
ANN approach to predict various performance parameters of
an R134a refrigeration system employing an evaporative con-
denser.

This paper describes the applicability of SWP-ANN to pre-
dict performance of a horizontal GCHP with R-22 as the refrig-
erant for a heating mode. For this aim, an experimental GCHP
system (two different GHE) was set up and tested in winter con-
ditions. Then, utilizing some of experimental data for training, a
SWP-ANN model for the system based on the back propagation
algorithm was developed. We compare ANNs results with the
SWP-ANN results. The simulation results show that the SWP
based networks can be used an alternative way in these sys-
tems.
2. System description

The schematic of the horizontal GCHP system constructed
for space heating is illustrated in Fig. 1. Table 1 summarizes the
main components specification and characteristics of the GCHP
system. The experimental set-up consists of three main compo-
nents:

• Horizontal ground heat exchanger (HGHE),
• heat pump unit equipment,
• auxiliary equipment.

There have been two GHEs installed at the University of Fi-
rat. Each consists of a high density polyethylene tube, 0.016 m
diameter. The HGHE1 and HGHE2 are made as a single pass
straight tube, buried at the depth of 1 and 2 m. The heat ex-
changers were been buried in the native ground. To allow for
measurement of the circulating water-antifreeze solution and
ground temperature a number of T-type thermocouples were in-
stalled. The pipe–ground interface temperature is measured in
a similar fashion to the water-antifreeze solution-temperature
measurement; except that thermal insulation is not used here
since the thermocouple should have good contact with both the
pipe and the ground.

The heat transfer from Earth to the heat pump or from
the heat pump to Earth is maintained with the fluid or water-
antifreeze solution circulated through the HGHEs. The fluid
transfers its heat to refrigerant fluid in the evaporator (the water-
antifreeze solution to refrigerant heat exchanger). The refriger-
ant, which flows through other closed loop in the heat pump,
evaporates by absorbing heat from the water-antifreeze solution
circulated through the evaporator and then enters the hermetic
compressor. The refrigerant is compressed by the compressor
and then enters the condenser, where it condenses. After the
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Fig. 1. Schematic diagram of the experimental apparatus.
Table 1
Technical features of the experimental set-up

Location: Elazığ, Turkey (lat. 38.41 ◦N; long. 39.14 ◦E)

Room information:
Window area 2.24 m2

Wall area 34.63 m2

Floor area 16.24 m2

Ceiling area 16.24 m2

Comfort temperature 293 K
Dimensions of the building 55.21 m3

Heat pump information:
Capacity 4.279 kW
Compressor type Hermetic
Evaporator type TT3; copper and inner cooling

aluminium
Condenser type HS 10; friterm

Compressor power input 2 HP; 1.4 kW
Compressor volumetric flow rate 7.6 m3/h
Compressor rotation speed 2900 tr/mn
Condenser fan 2350 m3/h, 145 W
Evaporating temperature 0 ◦C
Condensing temperature 54.5 ◦C
Refrigerant type R-22

Ground heat exchanger information:
Configuration type Horizontal
Pipe material Polyethylene, PX-b Cross Link
Length of pipe 50 m × 2
Pipe diameter 0.016 m
Piping depth 1 and 2 m
Pipe distance 0.3 m

Circulating pump information:
Type Alarko, NPVO-26-P
Powers 40, 62, 83 W

refrigerant leaves the condenser, the capillary tube provides al-
most 10 ◦C superheat that essentially gives a safety margin to
reduce the risk of liquid droplets entering the compressor. A fan
blows across the condenser to move the warmed air of the room.
A non-toxic propylene glycol solution, 25% by weight, was
circulated through the HGHE. In the heating season, the heat
exchange fluid (water-antifreeze solution) in the HGHE loop
collects heat from the earth and transfers that heat to the room.
After the heat exchange fluid absorbs heat from the ground, the
closed loop GHEs circulates the heat exchange fluid through
pipes (see Fig. 1).

As can be seen in Fig. 1, the collector valve allows for
varying the circulating water-antifreeze solution flow rate. The
flow rate of the circulated water-antifreeze solution through
the closed loop GHE was measured by using a rotameter and
controlled by a hand-controlled tap mounted on the collector.
Anemometer has been used to measure the circulating air flow
velocity. The electric power consumed by the system (compres-
sor, water-antifreeze circulating pump and fan) was measured
by means of wattmeter. The inlet and outlet temperatures of
the R-22 in the condenser, compressor and evaporator were
measured with T-type (copper-constantan) thermocouples. In
addition, temperatures of the circulated water-antifreeze solu-
tion at inlet and outlet of the HGHEs and evaporator (Fig. 1)
were measured. The ambient and indoor air temperatures were
measured with thermometers. The inlet and outlet pressures of
the compressor and evaporator were measured by using Bour-
don tube type manometers.

The heating and cooling loads of the test room were 2.5
and 3.1 kW at design conditions, respectively. The compres-
sor and other part of the experimental system were selected the
according to the heating and cooling load of test room from the
manufacturer’s catalog data. The COP of the GCHP system is
calculated as Refs. [1,2].
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3. Experimental analysis and uncertainty

Experimental performances were performed to verify the re-
sults from the ANN approach. The experimental temperature
results are given in Figs. 2 and 3. Fig. 2 shows the daily varia-
tion of (Tair1,out), (Tair1,in), (Twa1,out), (Twa1,in), (Tg1), (Ta) and
(Ti) in the case of using HGHE1. The room temperature is set to
a range of 21–24 ◦C by using a digital thermostat. The compres-
sor and circulating pump work in this temperature range. When
the room temperature exceeds 24 ◦C, only condenser fan works,
and therefore the room temperature decreases again. When the
room temperature decreases below 21 ◦C, the compressor and
circulating pump restart up. As the compressor and circulating
pump run, the outlet and inlet water-antifreeze solution temper-
ature drastically drop.

However, the mentioned solution temperatures increase
when they do not work. Fig. 3 indicates the daily variation of
(Tair2,out), (Tair2,in), (Twa2,out), (Twa2,in), (Tg2), (Ta) and (Ti) in
Fig. 2. The daily variation of various temperatures for the HGHE1.

Fig. 3. The daily variation of various temperatures for the HGHE2.
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the case of using HGHE2. It can be seen from Fig. 3 that the
trends in (Tair2,out), (Tair2,in), (Twa2,out), (Twa2,in), (Tg2), (Ta)
and (Ti) are similar to those given in Fig. 2.

The COP of the GCHP system was calculated by Refs. [1,2].
The COP increases with increasing the buried depth of HGHE.
Thus, the much more proper HGHEs design gives higher en-
hancement rates for COP.

An important issue is the accuracy of the measured data as
well as the results obtained by experimental studies. Uncer-
tainty is a measure of the “goodness” of a result. Without such
a measure, it is impossible to judge the fitness of the value as a
basis for making decisions relating to health, safety, commerce
or scientific excellence.

The result R is a given function in terms of the indepen-
dent variables. Let wR be the uncertainty in the result and
w1,w2, . . . ,wn be the uncertainties in the independent vari-
ables. The result R is a given function of the independent vari-
ables x1, x2, x3, . . . , xn. If the uncertainties in the independent
variables are all given with same odds, then uncertainty in the
result having these odds is calculated by [8]

wR =
[(

∂R

∂x1
w1

)2

+
(

∂R

∂x2
w2

)2

+ · · · +
(

∂R

∂xn

wn

)2]1/2

(1)

It is important that all uncertainties used in Eq. (1) can be eval-
uated at the same confidence level. The uncertainty estimates in
the COP can be calculated from Eq. (1) as

wCOP =
[(

∂COP

∂ρair
wρair

)2

+
(

∂COP

∂V̇air
wV̇air

)2

+
(

∂COP
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wcp,air

)2

+
(
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+
(
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)2

+
(
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∂Ẇc
wẆC
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+
(

∂COP

∂Ẇp
wẆp

)2

+
(

∂COP

∂Ẇcf
wẆcf

)2]1/2

(2)

The total uncertainties of the measurements are estimated to
be ±2.89% for the water-antifreeze temperatures and refrig-
erant temperatures, ±2.75% for pressures, ±4.35% for power
inputs to the compressor, condenser fan and circulating pump,
and ±3.00% for electric currents. Uncertainty in reading values
of the table is assumed to be ±0.20%. The overall uncertainty
for COP calculations was found to be 3.94 % for the R-22 test.
The uncertainty of COP is small enough.

4. Artificial neural networks (ANNs)

An ANN is an information processing idea that is inspired
by the way biological nervous systems, such as the brain,
process information. The key element of this idea is the novel
structure of the information processing system. It is composed
of a large number of highly interconnected processing ele-
ments (neurones) working in unison to solve specific problems.
A schematic diagram for an artificial neuron model is shown in
Fig. 4.
Fig. 4. Artificial neuron model.

These neurons are connected with connection link. Each link
has a weight that multiplied with transmitted signal in network.
Each neuron has an activation function to determine the output.
There are many kind of activation function. Usually nonlinear
activation functions such as sigmoid, step are used. Neural Net-
work’s are trained by experience, when applied an unknown
input to the network it can generalize from past experiences
and product a new result [9,10]. The output of the neuron net is
given by Eq. (3).

y(t + 1) = a

(
m∑

j=1

wijxj (t) − θi

)
and

fi�neti =
m∑

j=1

wijxj − θi (3)

where, X = (X1,X2, . . . ,Xm) represent the m input applied to
the neuron, Wi represent the weights for input Xi, θi is a bias
value, a(.) is activation function.

There are numerous algorithms available for training neural
network models; most of them can be viewed as a straightfor-
ward application of optimization theory and statistical estima-
tion. Most of the algorithms used in training artificial neural
networks are employing some form of gradient descent. This is
done by simply taking the derivative of the cost function with
respect to the network parameters and then changing those para-
meters in a gradient-related direction. The most popular of them
is the back propagation algorithm, which has different variants.
Standard back propagation is a gradient descent algorithm. It
is very difficult to know which training algorithm will be the
fastest for a given problem, and the best one is usually chosen
by trial and error. An ANN with a back propagation algorithm
learns by changing the connection weights, and these changes
are stored as knowledge.

5. Statistical data weighting pre-processing (SWP) and
modeling of the system

The proposed method involves a two-stage system in which
an ANN modeling system and SWP are hybridized. In the first
stage, normalization of the input data set is conducted and nor-
malized data are weighted in the interval [0,1] using statistical
weighting pre-processing. After this pre-processing step, the
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Fig. 5. Proposed model block diagram.
weighted data set was presented to the main modeling unit. The
second stage uses ANN to model weighted data.

The procedure of the proposed statistical weighed pre-
processing stage is defined as follows;

Assume that the data set which is going to be used for mod-
eling the GCHP system is composed of L × N matrix. Where
L indicates the number of input variables and N indicates the
number of samples per variable. The algorithm of the proposed
statistical weighting pre-processing system is given as follow-
ing:

(1) Determine the number of the input variables (L)
(2) For each input variable (i = 1,2,3, . . . ,L), do:

(2.1) Calculate the standard deviation of the input vari-
able i:

std(Xi) =
√√√√ 1

N

N∑
k=1

(
Xk,i − μ(Xi)

)2 (4)

where μ(Xi) is the mean value of the ith input vari-
able for N samples and can be calculated as follow-
ing:

μ(Xi) = 1

N

N∑
k=1

xk (5)

(2.2) Calculate the weight for ith input variable as given:

wi = μ(Xi)

std(Xi)
(6)

(3) Update the input variables with the calculated wi weights.

new(Xi) = wi ∗ old(Xi) (7)

In the statistical weighting pre-processing, the training samples
are used for determining the effect of each input variable to
the system modeling procedure. The variable which has more
influence on the system modeling will get the more weights
than the other input variables. Thus, each variable takes new
values according to its old values. Moreover, it is assumed that
the input variable which has less deviation for N samples is
the best for modeling the examined system. But, if a variable
changes abruptly, that variable is assumed to be less important
in using the modeling procedure.

There are many types of ANN architectures in the literature;
however, multi-layer feed-forward neural network is the most
widely used for prediction. A multi-layer feed-forward neural
network typically has an input layer, an output layer, and one or
more hidden layers [3]. In multi-layer feed-forward networks,
neurons are arranged in layers and there is a connection among
the neurons of other layers. The input signals are applied to the
input layer, the output layer contributes to the output signal di-
rectly. Other layers between input and output layers are called
hidden layers. Input signals are propagated in gradually mod-
ified form in the forward direction, finally reaching the output
layer [11].

In this study, the model has five input variables and one
output variable. Air temperature entering the condenser unit
(Tair,in), air temperature leaving the condenser unit (Tair,out),
water-antifreeze solution entering the HGHEs (Twa,in), water-
antifreeze solution leaving the HGHEs (Twa,out) and ground
temperatures at 1 and 2 meters (Tg1 and Tg2) constitutes the
input variables of the model. The COP of the system is the out-
put variable of the ANN model. The inputs of the model are
normalized in the (0,1) range with the SWP. The output values
are not normalized.

The block diagram of the proposed model is given in Fig. 5.
As can be seen from the block diagram; ANN model is adjusted,
or trained, so that a particular input leads to a specific target out-
put. Here, the ANN model is adjusted, based on a comparison
of the output and the target, until the model output matches the
target. Typically, many such input/target output pairs are used
to train a model.

The training parameters and the structure of the ANN used
in this study are as shown in Table 2. These were selected for
the best performance, after several different experiments, such
as the number of hidden layers, the size of the hidden layers,
value of learning rate, and type of the activation functions.

6. Results and discussion

In order to indicate the efficiency of the proposed SWP and
ANN structure for modeling purposes, a computer program was
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Table 2
ANN architecture and training parameters

Architecture

The number of layers 3
The number of neuron on the layers Input: 5

Hidden: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
and 15
Output: 1

The initial weights and biases Random
Activation functions Tangent Sigmoid

Training parameters
Learning rule Scaled Conjugate Gradient (SCG)
Learning rate 0.8
Mean-squared error 1e−07

performed under MATLAB (version 5.3. The MathWorks Inc.,
USA) environment using the neural network toolbox.

The optimal model parameters such as different training al-
gorithms, initial weights and activation function of the ANN
were investigated elsewhere [6,10] and out of scope of this
paper. Here, we only investigated the effect of the SWP of
the input data set on performance when modeling with ANN.
Moreover, a variable number of neurons (from 5 to 15) were
used in the hidden layer to observe as any performance im-
provement can be obtained with the proposed modeling sys-
tem. Thus, we constructed the ANN model with the parameters
which are given in Table 2. The data set was divided into two
separate data sets randomly—the training data set and the test-
ing data set. The training data set was used to train the ANN
model, whereas the testing data set was used to verify the accu-
racy and the effectiveness of the trained ANN model for GCHP
system (for HGHE1 and HGHE2). The adequate functioning of
the ANN depends on the sizes of the training set and test set.
The data set for the COP of GCHP system (for HGHE1 and
HGHE2) available included 38 data patterns. From these, 25
data patterns were used for training the ANN, and the remain-
ing 13 patterns were used as the test data set for trained ANN
model.

Model validation is the process by which the input vectors
from input/output data sets on which the ANN was not trained,
are presented to the trained model, to see how well the trained
model predicts the corresponding data set output values. Some
statistical methods, such as the root-mean squared (RMS), the
coefficient of multiple determinations (R2) and the coefficient
of variation (cov) may be used to compare predicted and actual
values for model validation.

The error can be estimated by the RMS, defined as [10,12]:

RMS =
√∑n

m=1(ypre,m − tmea,m)2

n
(8)

In addition, the coefficient of multiple determinations (R2)
and the coefficient of variation (cov) in percent are defined as
follows:

R2 = 1 −
∑n

m=1(ypre,m − tmea,m)2∑n
(t )2

(9)

m=1 mea,m
Table 3
Statistical values of COP for ANN

Algorithm-neurons RMS cov R2

SCG5 0.472323 14.521747 0.979375
SCG6 0.074953 2.220088 0.999871
SCG7 0.217507 6.327536 0.996017
SCG8 0.452977 11.827146 0.986067
SCG9 0.111438 3.170915 0.998996
SCG10 0.366284 10.730821 0.988589
SCG11 0.171011 4.747563 0.997748
SCG12 0.255057 7.544056 0.994344
SCG13 0.163817 4.681177 0.997812
SCG14 0.148872 4.208714 0.998229
SCG15 0.123272 3.495283 0.998779

Fig. 6. Variation of mean-square error with training epochs for SCG6 topology.
(For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

cov = RMS

|t̄mea,m|100 (10)

where n is the number of data patterns in the independent data
set, ypre,m indicates the predicted, tmea,m is the measured value
of one data point m, and t̄mea,m is the mean value of all mea-
sured data points.

The computer simulations are carried out as the following
manner; first; ANN topologies with various number of hidden
layer neurons are trained without SWP normalized inputs. But
for the sake of justice, we have normalized the ANN inputs
by dividing the each sample with a constant value. Therefore,
the input vector of the ANN was normalized to (0,1) range.
The prediction results of the ANN models are given in Ta-
ble 3. The training performance of the ANN (SCG6 topology)
is given in Fig. 6 where the variation of mean-square error with
training epochs is illustrated. Fig. 7 also shows the compari-
son of calculated and ANN predicted COP values of GCHP
system for SCG6 and the model error for each test sample
is shown in Fig. 8. Second, the ANN topologies with various
number of hidden layer neurons are trained with the statistical
weighting pre-processed inputs. The related test results (RMS,
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Fig. 7. Comparison of calculated and ANN predicted values of GCHP system
COP for SCG6.

Fig. 8. Error for each sample for SCG6.

cov and R2) are represented in Table 4. The decrease of the
training performance during the training process of SWP-SCG6
topology is shown in Fig. 9. In this figure the variation of mean-
square error with training epochs is given. The input variables
against to the output variables of SWP-SCG6 topology for the
test data set are also shown in Fig. 10. The errors of the SWP-
SCG6 model predictions for each test sample are also given in
Fig. 11.

One observes from both cases (ANN with SWP and only
ANN) by decreasing the number of hidden neurons the training
accuracy improves, as indicated by the smaller RMS and cov
values and R2-values approaching 1 (Tables 3 and 4). On the
other hand, beyond a certain point the errors obtained begin to
increase together with the complexity of the ANN as the larger
the number of hidden neurons the more complex the network
is. So, the convergence to the target error rate (1e−007) takes
Fig. 9. Variation of mean-square error with training epochs for SWP-SCG6
topology. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)

Fig. 10. Comparison of calculated and predicted COP values for SWP-SCG6.

more iteration. This situation is very time consuming. From
the statistical data presented in Tables 3 and 4, for COP val-
ues SWP-SCG6 algorithm with six neurons in the hidden layer
appeared to be most optimal topology. This topology gained
0.002665 RMS value, 0.076557 cov value and, 0.999999 R2

value, respectively. These values are really promising. The rest
of the SWP based ANN modeling results are also promising.
The R2 value of each topology is 0.9999 and RMS and cov
values are considerably small. It is observed during the sev-
eral runs of the computer simulation that the convergence of
the SWP-ANN takes more iteration. But the average prediction
error is quite small. This situation can be seen in Fig. 11.

The statistical results of the first stage of the computer sim-
ulation are given in Table 4. As it is aforementioned, this stage
involves the usage of only ANN structure for modeling pur-
poses. The related prediction results and structural information
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Fig. 11. Error for each sample for SWP-SCG6.

Table 4
Statistical values of COP for ANN with SWP normalization

Algorithm-neurons RMS cov R2

SWP-SCG5 0.004989 0.143290 0.999997
SWP-SCG6 0.002665 0.076557 0.999999
SWP-SCG7 0.004903 0.140958 0.999998
SWP-SCG8 0.006267 0.179854 0.999996
SWP-SCG9 0.002734 0.078810 0.999999
SWP-SCG10 0.002835 0.081417 0.999999
SWP-SCG11 0.003513 0.100882 0.999998
SWP-SCG12 0.005919 0.169903 0.999997
SWP-SCG13 0.007908 0.227402 0.999994
SWP-SCG14 0.013958 0.175948 0.999927
SWP-SCG15 0.013665 0.391664 0.999984

Fig. 12. Comparison of calculated and predicted COP values for SWP-SCG6
(the first part of the data set).

Fig. 13. Comparison of calculated and predicted COP values for SWP-SCG6
(the second part of the data set).

of the ANN are given in subsequent graphics. One observes
from Table 3, where this table gave us the statistical validation
of the proposed modeling, the most appropriate ANN topol-
ogy is SCG6. 0.074953 RMS value, 2.220088 cov value and
0.999871 R2 value is obtained for test patterns. The rest of the
results are obtained for the related ANN structures. These re-
sults are not promising when compared with the results which
were obtained with SWP-ANN structure. The convergence of
these structures is not taken more iteration. The running time of
the computer simulation of these structures is less than SWP-
ANN structure.

Moreover, the efficiency of the proposed method was demon-
strated by using the 3-fold cross validation test. In 3-fold cross
validation dataset is randomly split into three exclusive sub-
sets (X1, . . . ,X3) of approximately equal size and the holdout
method is repeated 3 times. These subsets contain 13, 13 and
12 samples (13 + 13 + 12 = 38) respectively. At each time, one
of the three subsets is used as the test set and the other two sub-
sets are put together to form a training set. The advantage of
this method is that it is not important how the data is divided.
Every data point appears in a test set only once, and appears in a
training set 2 times. Therefore, the verification of the efficiency
of the proposed method against to the over-learning problem
should be demonstrated. The 3-fold cross validation test results
were shown in Figs. 12, 13 and 14, respectively. The first subset
of the cross validation test was shown in Fig. 12 and the second
part of the data set and the predicted COP values were given in
Fig. 13 and finally the last part of the data set was already given
in Fig. 14.

7. Conclusions

The objective of this work is to improve the performance of
an ANN with a SWP method to learn to predict GCHP sys-
tems with the minimum data set. To evaluate the effectiveness
of our proposal (SWP-ANN), a computer simulation is devel-
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Table 5
Experimental data’s at HGHE1 situation

HGHE1 Time (h) Input variables Output
variable

Twa1,in Twa1,out Tg1 Tg2 Tair1,out Tair1,in COP
(◦C) (◦C) (◦C) (◦C) (◦C) (◦C)

T
ra

in
in

g
sa

m
pl

es

1 00:06 13.4 16.8 21.7 28.2 32.6 24.5 3.59
2 00:11 11.7 15.4 20.4 26.8 32 24.2 3.46
3 00:24 10.6 14.2 19.3 25.6 31.6 24.2 3.28
4 00:58 11.5 14.7 18.2 24.8 31.5 23.4 3.59
5 01:10 10.2 13.7 17.7 24.2 31 23 3.55
6 01:20 9.1 12.6 16.9 23.4 31 23.1 3.5
7 01:58 11.5 15.6 17 23.9 30.4 22.6 3.46
8 02:07 10.1 13.4 16.4 23.3 31.8 23.8 3.55
9 02:15 8.1 11.5 15.2 21.9 31.2 23.1 3.59

10 03:00 11.1 15.3 16.8 23.9 29.9 22.4 3.33
11 03:10 9.2 12.6 16.1 23 30.8 22.8 3.46
12 03:20 7.6 11 14.9 21.7 31 23.8 3.19
13 03:50 10.4 14.4 16.2 23.4 29.2 21.7 3.33
14 04:00 9.4 13 16 23.1 30.5 22.7 3.46
15 04:07 7.8 11.3 15.1 22.1 30.2 22.2 3.55
16 04:25 7.3 10.6 14.6 21.6 30 21.8 3.64
17 04:54 11 15.1 16.5 23.8 29 21.5 3.33
18 05:05 9.9 13.6 16.2 23.5 30.8 22.7 3.59
19 05:15 8 11.4 15.1 22.3 30.4 22.9 3.33

Table 6
Experimental data’s at HGHE2 situation

HGHE2 Time (h) Input variables Output
variable

Twa2,in Twa2,out Tg1 Tg2 Tair2,out Tair2,in COP
(◦C) (◦C) (◦C) (◦C) (◦C) (◦C)

20 00:06 13.2 17.3 19.7 26.3 32 23.5 3.77

T
ra

in
in

g
sa

m
pl

es

21 00:11 12.2 15.9 19.1 25.5 31.6 23.4 3.64
22 00:24 10.4 14.1 18 24.4 31.2 23.2 3.55
23 00:58 11 18.2 18.5 25.2 30.8 22.5 3.68
24 01:10 12.6 16.6 18.3 24.9 31.3 22.9 3.73
25 01:20 11.3 15.1 17.8 24.4 31 23.1 3.5

Te
st

in
g

sa
m

pl
es

26 01:58 13 17 18.1 24.7 31.6 23.3 3.68
27 02:07 11.1 14.6 17.4 24 31.2 23.5 3.42
28 02:15 10.3 13.9 16.9 23.4 30.9 23 3.5
29 03:00 12.9 17.2 18.1 24.7 30.2 22.7 3.33
30 03:10 11.8 15.5 17.7 24.2 30.2 22.7 3.33
31 03:20 10.3 14.1 16.9 23.2 31 22.9 3.59
32 03:50 12.6 16.3 17.5 24.1 29.8 22.1 3.42
33 04:00 11.1 15 17.2 23.7 31 22.8 3.64
34 04:07 10.6 14.2 16.9 23.3 31 23 3.55
35 04:25 8.6 12.3 15.8 22.1 30.6 23 3.37
36 04:54 12.1 15.8 17 23.3 30 22.2 3.46
37 05:05 10.5 14.4 16.6 22.9 31 22.9 3.59
38 05:15 9.3 13.2 16.1 22.4 30.7 23.1 3.37
oped on MATLAB environment. We compare our results with
the ANN results. In related tables, these comparisons can be
seen. Some statistical methods, such as the root-mean squared
(RMS); the coefficient of multiple determinations (R2) and the
coefficient of variation (cov) are used to compare predicted and
actual values for model validation. The R2-values are about
0.9999, which can be considered as very promising. The sim-
ulation results show that the SWP based networks can be used
an alternative way in these systems.
This paper shows that the values predicted with the SWP-
ANN, especially with the back propagation learning algorithm
along with feed forward, can be used to predict the performance
of the GCHP system quite accurately. Therefore, instead of lim-
ited experimental data found in literature, faster and simpler
solutions are obtained using hybridized structures such as SWP-
ANN.

It can therefore be concluded that it is possible to train a
suitable neural network to model a GCHP system, which can
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Fig. 14. Comparison of calculated and predicted COP values for SWP-SCG6
(the third part of the data set).

be used to predict the performance of the system under any
ambient and soil conditions. Future studies will concentrate
on applications in predicting the fault diagnosis of GCHP sys-
tems.

Appendix

The training and testing samples (data) are given in Tables 5
and 6, respectively.
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